49,827 research outputs found

    An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection

    Full text link
    Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised.Comment: The 15th IEEE International Conference on Intelligent Transportation Systems (ITSC 2012

    Testing mechanisms of compensatory fitness of dioecy in a cosexual world

    Get PDF
    Questions: All else being equal, populations of dioecious species with a 50:50 sex ratio have only half the effective reproductive population size of bisexual species of equal abundance. Consequently, there is a need to explain how dioecious and bisexual species coexist. Increased mean individual seed mass, fecundity, and population density have all been proposed as attributes of unisexual individuals or populations that may contribute to the persistence or resilience of dioecious species. To date, no studies have compared sympatric dioecious and cosexual species with respect to all three components of fitness. In this study, we sought evidence for these compensatory advantages (higher seed mass, greater seed production per unit basal area, and higher population density) in dioecious species. Location: Five 20–25 ha forest dynamic plots spanning a latitudinal gradient in China, including two temperate, two subtropical, and one tropical forest. Methods: We used a phylogenetically corrected generalized linear modelling approach to assess the phylogenetic dependence and joint evolution of sexual system, seed mass and production, and ecological abundances among 48–333 species and 32,568–136,237 individuals per forest. Results: Across all five forests, we detected no consistent advantage for dioecious relative to sympatric cosexual species with respect to mean individual seed mass, seed production or the density of stems in any size class. Conclusions: Our study suggests that seed traits may provide compensatory mechanisms in some forests, but most often the coexistence of sexual systems cannot be explained by advantages of dioecy related to seed quality and demographic parameters. Future investigations of the factors that promote coexistence may increase our understanding by expanding the search to include attributes such as lifespan and tolerance or resistance to herbivores

    Two-electron-satellite transition of donor bound exciton in ZnO: Radiative Auger effect

    Get PDF
    Two-electron-satellite (TES) transition of donor bound exciton (D 0X) is an interesting many-body quantum process. In this letter, precise luminescence spectra and temperature behaviors of the TES transition of aluminum bound exciton in two kinds of zinc oxide single crystals were investigated in detail. It is found that the TES transition can be treated as a radiative Auger process in which the temperature dependence of the emission intensity of the transition can be fitted very well with a model taking into account the temperature dependent Auger term and thermal dissociation of the D0X excitons. © 2013 AIP Publishing LLC.published_or_final_versio

    Exploiting Chordality in Optimization Algorithms for Model Predictive Control

    Full text link
    In this chapter we show that chordal structure can be used to devise efficient optimization methods for many common model predictive control problems. The chordal structure is used both for computing search directions efficiently as well as for distributing all the other computations in an interior-point method for solving the problem. The chordal structure can stem both from the sequential nature of the problem as well as from distributed formulations of the problem related to scenario trees or other formulations. The framework enables efficient parallel computations.Comment: arXiv admin note: text overlap with arXiv:1502.0638

    Elongation Modeling and Compensation for the Flexible Tendon-Sheath System

    Get PDF
    In tendon-driven systems, the elongation of the tendon would result in inaccuracy in the position control of the system. This becomes a critical challenge for those applications, such as surgical robots, which require the tendon-sheath system with flexible and even time-varying configurations but lack of corresponding sensory feedback at the distal end due to spatial restrictions. In this paper, we endeavor to address this problem by modeling the tendon elongation in a flexible tendon-sheath system. Targeting at flexibility in practical scenarios, we first derived a model describing the relationship between the overall tendon elongation and the input tension with arbitrary route configurations. It is shown that changes in the route configuration would significantly affect the tendon elongation. We also proposed a remedy to enhance the system tolerance against potential unmodeled perturbations along the transmission route during operation. A scaling factor S was introduced as a design guideline to determine the scaling effect. A dedicated platform that was able to measure the tensions at both ends and the overall tendon elongation was designed and set up to validate the new findings. Discussions were made on the performance and the future implementation of the proposed models and remedy.published_or_final_versio

    Influence of capping layer and atomic interdiffusion on the strain distribution in single and double self-assembled InAs/GaAs quantum dots

    Get PDF
    The strain distribution in single and double self-assembled InAsGaAs quantum dots is theoretically investigated by using a valence-force-field model. The results show strong influence of the capping conditions on the strain distribution in individual and stacked dots with wetting layers. In particular, the intermixing of atoms is incorporated into the strain calculations, leading to a conclusion that the atomic intermixing can notably modify the strain profiles near the interfaces of the stacked dot system. © 2008 American Institute of Physics.published_or_final_versio

    Aligning Manifolds of Double Pendulum Dynamics Under the Influence of Noise

    Full text link
    This study presents the results of a series of simulation experiments that evaluate and compare four different manifold alignment methods under the influence of noise. The data was created by simulating the dynamics of two slightly different double pendulums in three-dimensional space. The method of semi-supervised feature-level manifold alignment using global distance resulted in the most convincing visualisations. However, the semi-supervised feature-level local alignment methods resulted in smaller alignment errors. These local alignment methods were also more robust to noise and faster than the other methods.Comment: The final version will appear in ICONIP 2018. A DOI identifier to the final version will be added to the preprint, as soon as it is availabl

    Circulating endothelial cell-derived extracellular vesicles mediate the acute phase response and sickness behaviour associated with CNS inflammation.

    Get PDF
    Brain injury elicits a systemic acute-phase response (APR), which is responsible for co-ordinating the peripheral immunological response to injury. To date, the mechanisms responsible for signalling the presence of injury or disease to selectively activate responses in distant organs were unclear. Circulating endogenous extracellular vesicles (EVs) are increased after brain injury and have the potential to carry targeted injury signals around the body. Here, we examined the potential of EVs, isolated from rats after focal inflammatory brain lesions using IL-1β, to activate a systemic APR in recipient naïve rats, as well as the behavioural consequences of EV transfer. Focal brain lesions increased EV release, and, following isolation and transfer, the EVs were sequestered by the liver where they initiated an APR. Transfer of blood-borne EVs from brain-injured animals was also enough to suppress exploratory behaviours in recipient naïve animals. EVs derived from brain endothelial cell cultures treated with IL-1β also activated an APR and altered behaviour in recipient animals. These experiments reveal that inflammation-induced circulating EVs derived from endothelial cells are able to initiate the APR to brain injury and are sufficient to generate the associated sickness behaviours, and are the first demonstration that EVs are capable of modifying behavioural responses
    • …
    corecore